If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+6a-45=0
a = 1; b = 6; c = -45;
Δ = b2-4ac
Δ = 62-4·1·(-45)
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{6}}{2*1}=\frac{-6-6\sqrt{6}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{6}}{2*1}=\frac{-6+6\sqrt{6}}{2} $
| 6/x-5=3/x-1 | | x+2x+x+10=70 | | 8x-3=5x+9* | | g=5+0.89/1.25 | | 4x=13x-8 | | 3w+8=-11 | | 25=13x-9x | | X+15x=79 | | 13/2+5x=19 | | 9=-9+(7-1)(d) | | 30x=1.85 | | 3x+1/2x=4/5 | | 16=n²-n+2 | | 6=4y+18 | | 5-63/7/x=1/2 | | 34-5(p+)=4 | | 7b=4b+30 | | 10=3+4(t-2) | | 21/56=15/x= | | 2x-5/2=1 | | 7x/7=1.4 | | 570p+190=3000 | | 4x-25=43 | | 3p=2p-p= | | Bx5=55 | | f=(120)(0.525) | | 1-5x=-4-5 | | 5c+2=6-7c | | 6x9=-21 | | 7.9-4c=6.7 | | 4•3x+5•3x=312 | | (2x+3)/(2x+6)=7/3 |